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Abstract— Single channel based wireless networks have limited bandwidth and throughput and the 

bandwidth utilization decreases due to congestion and interference from other sources. In order to increase 

the throughput, transmission in multiple channels is considered as an option. In this paper, we propose a 

distributed dynamic channel allocation scheme using adaptive learning automata for wireless networks 

whose nodes are equipped with single radio interfaces. The proposed schemes, Adaptive Pursuit Reward-

Inaction, Adaptive Pursuit Reward-Penalty, and Adaptive Pursuit Reward-Only, run periodically on the 

nodes, and adaptively find the suitable channel allocation in order to attain a desired performance. A novel 

performance index, which takes into account the throughput and the energy consumption, is considered. 

The proposed learning scheme is adaptive in the sense of updating rule. The update value of the 

probabilities in the each step is a function of the error in the performance index. Comparing the three 

schemes in simulation environment, it was shown that the Adaptive Pursuit Reward-Only scheme 

guarantees updating the probability of the channel selection for all the links – even the links that their 

current channel allocations do not provide a satisfactory performance, hence reducing the frequent channel 

switching on the links that cannot achieve the desired performance on any of the channels. 

Index Terms— Adaptive reward-inaction, Channel Allocation, Learning Automata, Wireless Networks.    

I. NOMENCLATURE 

Symbol Definition Symbol Definition 

N  number of channels ( )j

iJ k  percentage of successful transmissions 
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II. INTRODUCTION 

T is widely believed that the wireless networks are being limited by the lack of the available spectrum, 

and at the same time the spectrum is not efficiently utilized. Spectrum utilization can be improved using 

spatial techniques, frequency, modulation techniques, etc. As a consequence, newer concepts such as 

software-defined radios and cognitive radios were made possible [1]. While the cognitive radios are not 

limited to spatial and temporal spectrum utilization, the spatial channel reuse approach in wireless networks 

has been vastly investigated [2]-[7].  

The bulk of the research on multiple channel allocation is notably done for mesh networks [3],[7], 

WLANs with infrastructure [4], cellular networks [8] and cognitive radio networks [5]. The multi-channel 

allocation problem has been investigated for the networks in which the nodes are equipped with either 

multiple-radio interface [7]-[10] or single-radio interface [2],[4],[11]-[13]. In the single-radio approach, the 

radios switch between the channels frequently in order to minimize interference and collision between the 

simultaneous transmissions in the same communication range. Usually in this approach, all the nodes 

periodically switch to a common channel for channel co-ordination, and then switch to different data 

channels to conduct the simultaneous transmissions. Therefore the switching delay (80-100 µs [2]) becomes 

one of the overheads increasing the network end-to-end delay. Additionally, synchronization is required in 

these schemes.  

In the networks with infrastructure and access points [4], the channel co-ordination signals are exchanged 

I 
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through the wired distribution system connecting the access points. This practically eliminates the need for 

periodically switching to a common channel. In the case of multiple-radio interface approach, usually one 

interface is dedicated to the control signals, and the remaining channels are allocated for simultaneous 

transmission of data thus increasing temporal and spatial spectrum utilization and not requiring 

synchronization. Further, utilizing multiple radios reduces the need for frequent channel switching, and 

hence the switching overhead is significantly less than that in the single-radio approach.  However, the cost 

of additional radios and their energy consumption must be taken into account. 

By contrast, in this paper, we propose a distributed dynamic channel allocation scheme for wireless 

networks and in particular wireless sensor networks particular wireless sensor networks whose nodes are 

equipped with single radio interface due to their low cost requirement. Therefore, synchronization is 

required in this scheme. The periodic nature of this algorithm makes it dynamic and enables the channel 

allocation to adapt to the topographic changes, possible loss of some channels, mobility of the nodes, and 

the traffic flow changes. The adaptive pursuit learning algorithm runs periodically on the nodes, and 

adaptively finds the optimum channel allocation that provides the desired performance (or closest to the 

desired performance). Unlike the linear and nonlinear schemes in which the reward and penalty values were 

functions of the probabilities, we examine an adaptive updating scheme in which the reward and penalty 

values are functions of the error between the desired and the estimated performance of the current channel 

allocation. By selecting realistic desired performance metric, the convergence of the algorithm is 

guaranteed. 

In Section III, the methodology and algorithms are presented. Simulation results and discussions are 

provided in Section IV. Section Vconcludes the paper. Proof of convergence of the algorithm is presented 

in Appendix A. 
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III. METHODOLOGY AND ALGORITHM 

A. Methodology 

In the proposed algorithm, the nodes periodically switch between the control stage, Tc, and data 

transmission stage, Td (Figure 1). Each data transmission period, Td, is comprised of the individual time 

slots, Ts. As an initial assumption, we consider peer-to-peer networks in which all nodes are equipped with 

a single radio. We also assume that routes have been established by a proactive routing protocol such as 

optimal link state routing (OLSR) [17] or optimal energy delay routing (OEDR) [18]. During Tc, all nodes 

are on one common channel to communicate the control signals. It is possible that one or more of the 

channels get highly affected by external interference and the network would lose these channels temporarily 

or permanently.  

In order to maintain the network connectivity in the sense of exchanging the control signals, we propose 

having a unique sequence of all the channels. In the event of a loss of a control channel, the nodes would try 

the next channel in the sequence as the control channel during Tc. The control signal carries schedule of the 

time slots for the links in the subsequent data transmission period. During the time scheduling, groups of 

non-intersecting links are scheduled for each Ts time slot. Also broadcast communications and route 

discovery are performed during Tc period. After the Tc stage, the data transmission stage, Td, begins. During 

each Ts time slot of Td, channels are allocated to the links previously assigned to the Ts. The channel 

allocation algorithm is an iterative algorithm during which the channel allocation is refined. Due to the 

iterative nature of the algorithm, each Ts is divided into smaller time slots, Tmini, separated by Tg – guard 

bands. The probabilities and parameters of the channel allocation algorithm are updated for each link from 

one Tmini to the next. 

By periodically repeating the Tc and Td stages, the channel allocation becomes dynamic. In addition, the 

network can adapt to the topographic changes, mobility of the nodes, and the changes in the traffic flow. 

Also in the event of control channel, Cc, loss the next channel in the sequence will be used as the control 
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channel. It must be noted that this sequence is a common knowledge among all the nodes in the network. 

Any eligible external node that tries to join the network would send out join-request signals periodically 

and listen in the intervals. It would be able to join the network during one of the Tc periods, and obtain the 

sequence and other necessary information about the network.  

We also propose using the control channel as one of the available channels for data transmission during 

the Td period. By utilizing this additional channel during Td instead of dedicating it to the control signals 

and using it only during Tc, the spectrum utilization can be increased. 

B. Algorithm 

During each Ts, the learning algorithm is run on each transmitter node, i, separately. We first use the 

Adaptive Pursuit Reward-Inaction (PRI) which is an extended version of Distributed PRI [14],[15]. Unlike 

the DPRI, in the Adaptive PRI scheme the update value, )(k , of the probabilities is not a constant anymore. 

The update value of the probability is now a function of the error, )(k , of the performance metric. We 

chose DPRI algorithm because of the faster convergence provided by it [14]. The Adaptive PRI algorithm is 

presented in Section B.1. However, it appears that depending on the conditions that determine whether the 

environment response is satisfactory or unsatisfactory, the channel allocation on some links might always 

result unsatisfactory response. This would result in „left-out‟ links, whose channel selection probabilities 

are not updated due to the „reward‟ property of the algorithm.  

In order to eliminate this issue, we proposed and examined the Adaptive Pursuit Reward-Penalty (PRP) 

learning scheme. The „reward‟ behavior of this scheme is the same as the Adaptive PRI. On the other hand, 

in the case of unsatisfactory environment response for a channel selection, the probability of selecting that 

channel (if that channel is not the channel with the highest performance among the channels) is decreased, 

and the probabilities of selecting the other channels are increased. The algorithm is presented in Section 

B.2. Although this scheme eliminates the „left-out‟ links problem, it has a rather slower convergence 

because of increasing the probabilities of some of the non-optimal channels in the „penalty‟ scheme. 



 6 

In the third effort, we proposed and examined using an Adaptive Pursuit Reward-Only (PRO) learning 

algorithm. In this algorithm we still use a desired value of the performance for determining the magnitude 

of the update step in the probabilities, but we no longer use the concept of „satisfactory‟ or „unsatisfactory‟ 

environment response. In other words, the Adaptive PRO is the same as the Adaptive PRI, but the 

probabilities are guaranteed to be updated in a „pursuit reward‟ manner at each iteration.  

The performance metric of the network used in this paper was defined as  

desiredE

H*                                                                                                                                             (1)                                                                 

where H is the desired percentage of the successful transmissions and E refers to the desired consumed 

energy per one successful packet transmission. By this definition, the unit of the performance metric 

* becomes packets joule. Therefore, by selecting a realistic desired performance metric, the objective is to 

find the optimum channel allocation that provides a higher performance in terms of throughput defined in 

terms of a target value. A large value of 
*
indicates successful transmission of more packets. Hence, this 

performance metric covers both the throughput and the energy efficiency of the network. 

B.1.  The Adaptive Pursuit Reward-Inaction Algorithm 

The steps of the Adaptive PRI, which runs on each individual link, are summarized as: 

1) Initially, the probability of selecting any of the channels, )0(j

ip , is set to  
N

1 . 

2) Select a channel according to the probability distribution, )(kp j

i
. Transmit packets during the 

transmission interval. 

3) Based on the measured feedback, update ( )j

iJ n , )(kLj

i
 and )(ke j

i
. 

4) If MkLj

i )( , update )(ˆ kH j

i
, )(ˆ kE j

i  and )(ˆ kj

i
 and continue on step 5. Otherwise, go to step 7. 
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where
1
, the minimum possible probability of selecting a channel is chosen such that guarantees all the 

channels be selected for a minimum certain number of times, KI, during a certain number of iterations, MI. 

This would keep the estimated channel performance values up-to-date.                                                                                                                          

7) Continue to the next iteration, step 2. 

B.2. The Adaptive Pursuit Reward-Penalty Algorithm 

The steps in the Pursuit Reward-Penalty learning algorithm are the same as the steps in the Pursuit 

Reward-Inaction, except for Step 6 – the update law. In this step, when the environmental response is not 

satisfactory, the probability of selecting the current channel is reduced, and the probability of the other 

channels are increased as follows. 

6) Detect the channel index,
im̂ , that provides the best  estimated performance, )(ˆ kj

i
.   

 
1 The minimum probability of selecting a channel is determined such that it satisfies the non-equality below.  

Pr{channel i being selected at least KI  times over MI  iterations} .  

This implies that  

I

I

I

M

Kj

jMj

I jMC )1.()..( , 
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i
 

i

l

i

l

i

N

mqq

q

i

m

i

mlkkpkp

kpkp
i

i

ˆ)),()(max()1(

                    )1(1)1(
ˆ,1

ˆ

                                                                                                                       

If the environmental response was unsatisfactory, i.e. ,1)(kj

i
 and imj ˆ , 

jl
N

k
kpkp

kpkp

l

i

l

i

N

jqq

q

i

j

i

1
)(

)()1(

  )),1(1max()1(
,1                                                                                                 

B.3. The Adaptive Pursuit Reward-Only Algorithm 

The steps in the Pursuit Reward-Penalty learning algorithm are the same as the steps in the Pursuit 

Reward-Inaction, except for Step 6 – the update law. In this scheme, the probabilities are updated such that 

selecting the channel with the highest performance is “pursued.” This update is performed regardless of the 

“satisfactory” or “unsatisfactory” condition of the performance. Anyhow, we want to increase the 

probability of selecting the channel which provides the highest performance – even if this performance is 

less that the desired performance. However, the magnitude of the update step is determined by the relative 

error of the performance, *

)(k
. The update law, Step 6, of the algorithm is as follows.                                                                                                                                                        

6) Detect the channel index, 
im̂ , that provides the best  estimated performance, )(ˆ kj

i
.   

Update the probabilities regardless of the environmental response. The probability of selecting the 

channel that provides the highest performance is increased and the probabilities of the other channels are 

reduced as following. 

i
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i

i
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where NKM II .  ( N is the number of available channels). 
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IV. SIMULATION RESULTS AND DISCUSSIONS 

In this section, we present the numerical results of running the three learning algorithm on a set of peer-

to-peer wireless networks with varying traffic, mobility, and number of nodes. The simulations were 

performed using network simulator NS-2. Moreover, it was modified to implement the three learning 

algorithms: Adaptive PRI, Adaptive PRP, and Adaptive PRO. The networks are consisted of 50 single-

radio wireless nodes located in an area of 100m 100m, while the communication range of the nodes are 

250m. As a result, a dense network topology is created where a single channel is not able to provide 

sufficient quality of service (QoS). Traffic is generated by a constant bit rate (CBR) sources with data rates 

equal to 2 Mbps and packet size equal to 1024 bytes. The simulations considered networks with up to 11 

orthogonal channels whose bandwidth is set to 11 Mbps. The objective of the multi-channel protocol is to 

allocate the available channels to the links such that the performance converges to a desired value as 

defined in Equation (1). The target value *  and the update parameters were set for different scenarios such 

that the desired performance is achievable. The nodes start without preferred channel and switch between 

channels until they find the one that provides the desired performance. The width of the moving average 

window, M, was selected to be 5.  

A. Static Scenario – starting flows at different times 

This simulation scenario considers single time slot duration, Ts, where all nodes are contending for the 

channels. The three Adaptive learning algorithms were run on the networks of 50 nodes with up to 11 

orthogonal channels. Three flows start at second 2, then seven more flows start at second 3 and finally 

fifteen more flows start at second four.  The standard 802.11 protocol was also run on the networks to 

compare its performance to the performance of the learning algorithms. This was done by a) using a single 

channel, and b) using 10 channels and randomly allocating them to the links. For each case, the simulation 

was repeated using 10 random scenarios, and the average of the 10 repeated simulations were used in result 

analysis. The achieved throughput by applying the different methods is presented in Table 1. 



 10 

It is noticed that as the number of channels used in the Adaptive PRI learning schemes is increased, the 

throughput is significantly increased compared to the single-channel 802.11 scenario. The increased 

throughput is provided by the additional capacity of the additional channels. Naturally when there are only 

3 flows in the network, we do not expect the throughput to improve by increasing the number of channels to 

higher than 3. For the case of 25 flows, the Adaptive PRI with 10 data channels provides an improvement 

of 13 times in throughput compared to a single-channel 802.11. When there are 25 flows in the network and 

only one channel is provided, the network is so congested that it provides a throughput of only 3 for the 25 

flows. However, when the Adaptive PRI is used on 10 channels, it provides a higher capacity though not 

the capacity required to eliminate the congestion. The capacity provided by the 10 channels is almost 

10×capacity of each channel. The capacity of each channel for data packets in 802.11 is almost half of the 

channel bandwidth. We had chosen a standard channel bandwidth of 11Mbps in the simulations. Therefore 

the total throughput of 39.58 Mbps is reasonable compared to the total capacity of almost 50 Mbps, since 

there is a noticeable congestion in the network. Also for the same case of 25 flows, PRI with 10 data 

channels provides an improvement of 1.22 times in throughput over random allocation of 10 channels. 

Using the Adaptive PRI algorithm for the networks of 6 nodes and 20 nodes, the maximum possible 

throughput (6 Mbps and 20 Mbps, respectively) can be achieved by utilizing 3 and 10 channels 

respectively, which will allocate a different channel to each link. However, for the network of 50 nodes 

saturation and high drop rate are inevitable, although the throughput is improved significantly by increasing 

the number of channels. As the number of nodes in the network increase, the number of contending nodes 

during the time slot, Ts, and mini slot, Tmini, increases. This can result in a case that some nodes do not get 

any chance to transmit during Tmini. Hence with a performance much smaller than the desired performance 

(i.e., unsatisfactory environment response), due to the “reward” characteristic of the learning algorithm, 

probabilities of channel selection would not be updated for them. We will get back to this issue later. 

Table 1 also presents the drop rate in the network using the different methods of channel allocations, and 
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different number of channels. The results show that for the networks of 3 and 10 flows, the drop rate is 

significantly reduced by utilizing the Adaptive PRI learning scheme and more number of channels. The 

drop rate for the network of 25 flows is also reduced, but not as much as it was for the networks with 

smaller densities. This is due to the fact that the network is so dense and the number of contending nodes is 

so high that the saturation is inevitable. It can be noticed by using the Adaptive PRI channel allocation and 

10 data channels, in the worst case scenario (greatest number of flows), the drop rate is reduced by 78.38% 

compared to when using a single-channel 802.11. For the same case of 25 flows, PRI with 10 data channels 

provides a 44.78% reduction on drop rate over random allocation of 10 channels.  

Table 1 presents the energy consumption per packet in the network using the different methods of 

channel allocations, and different number of channels. The results show that using the PRI learning scheme 

and increasing the number of data channels significantly improves the energy consumption per packet. It 

can be noticed that by using PRI channel allocation and 10 data channels, in the worst case scenario 

(greatest number of flows), the energy consumption is reduced by 90.25% compared to when using a 

single-channel 802.11. Also using PRI with data channels reduces the energy consumption by 12.33%. For 

the same case of 25 flows, PRI with 10 data channels provides a 12.33% reduction in energy consumption 

per packet over random allocation of 10 channels. 

Another performance metric that was used for evaluating the channel allocation schemes was fairness 

index [16]. Table 1 also presents the fairness index provided by using the different methods of channel 

allocations, and different number of channels. The results show that using the Adaptive PRI learning 

scheme and increasing the number of data channels improves the fairness index – especially when there are 

greater number of flows. It can be noticed that by using the Adaptive PRI channel allocation and 10 data 

channels, in the worst case scenario (greatest number of flows), the fairness index is increased by 3.7 times 

compared to when using a single-channel 802.11. Also using the Adaptive PRI with 10 data channels 

increases the fairness index by 1.28%. For the same case of 25 flows, the Adaptive PRI with 10 data 



 12 

channels provides a 1.28% improvement in fairness over random allocation of 10 channels.  

The other two channel allocation learning schemes, i.e. Adaptive PRP and Adaptive PRO, were also 

applied to the same networks and scenarios, with 10 data channels. Table 2 shows the throughput over the 

network when using the Adaptive PRI, PRP and PRO schemes and 10 data channels. It is noticed that for 

the greater number of flows, the Adaptive PRP schemes provides a slightly higher throughput compared to 

the other two learning schemes. Table 2 also shows the drop rate over the network when using the Adaptive 

PRI, PRP and PRO schemes and 10 data channels. It is noticed that for the greater number of flows, the PRI 

scheme provides a slightly higher (worse) drop rate compared to the other two learning schemes. 

Table 2 shows the energy consumption per packet in the network when using the Adaptive PRI, PRP and 

PRO schemes and 10 data channels. The three methods do not show any significant difference in the sense 

of energy consumption. The fairness index of the network, when using the Adaptive PRI, PRP and PRO 

schemes and 10 data channels, is shown in Table 2. It is noticed that for the greater number of flows, the 

Adaptive PRP scheme provides a slightly higher (better) fairness compared to the other two learning 

schemes. 

We also examined a case in which all the 25 flows started at second 2, then they were reduced to 10 flows 

at second 3, and finally reduced to 3 flows at second 4. Similarly the simulations were performed for 10 

random scenarios for a network of 10 data channels, using the Adaptive PRI learning automata scheme. By 

comparing Table 3 to Table 1, it can be concluded that by starting a greater number of flows at the same 

time, a smaller throughput can be achieved. That is, when 25 flows start at the same time, the achieved 

throughput is limited to 36.76 Mbps (Table 3), while by adding 15 flows to the previously existing 19 flows 

(Table 1) a throughput of 39.58 Mbps can be achieved. The reason for the smaller achieved throughput is 

the high collision in the case of the simultaneously starting greater number of flows. 

B. Mobile Scenario 

In Section IV.A (static scenario) we mentioned the assumption of a static network topology during Ts. In 
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this section we examine a case that the network topology undergoes changes during the Ts period. We 

consider a larger network (1000mx1000m) and greater number of flows (50 flows, i.e. 100 peer-to-peer 

nodes). Then the behavior of the single-channel 802.11, randomly allocated 10 channels using 802.11, and 

the Adaptive PRI learning scheme in the case of mobility of the nodes were examined. For four different 

values of maximum speed (5, 10, 15, and 20 m/s) and also static case (0 m/s), 10 random scenarios were 

generated and the average of these repeated simulations were used for comparison. Table 4 presents the 

results for using the Adaptive PRI and 10 channels. The speed change does not show a significant effect on 

the performance. However, in general, these larger network scenarios with a higher traffic flow show a 

lower performance compared to the static case (Section IV.A). 

By using the Adaptive PRI learning scheme, the throughput, drop rate, energy consumption and fairness 

index show a significant improvement compared to the case that 802.11 is used with randomly allocated 10 

data channels (Table 4). The throughput is improved by 19.6%, the drop rate is reduced by 47.6%, the 

energy consumption per packet is reduced by 10.6% and the fairness index is improved by 11.4%. Also 

compared to the single-channel 802.11, both Adaptive PRI and 802.11 over randomly allocated 10-data 

channel are performing significantly better.  

C. Comparison of the three schemes of the learning automata regarding to probability update 

Earlier we mentioned the problem of „left-out‟ links in the PRI algorithm. This problem occurs when 

none of the channels provide a satisfactory performance, and hence the probabilities of channel selections 

are not updated at all. This case is examined below, where the Adaptive PRI is used for channel allocation 

in a peer-to-peer network of 50 nodes (25 links) using 10 channels.  

It was observed that the channel allocations of 21 links out of 25 links converged. The channel allocations 

for the links 7, 9, 22, and 23 always provided a performance much smaller than the desired performance 

(i.e., unsatisfactory environment response). Due to the “reward-inaction” characteristic of the learning 

algorithm, probabilities of channel selection for these links would not be updated. These links are „left-out‟ 
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of the update process. The probabilities of channel selections for one of the converged links (link 15), and 

one of the non-converged links (link 7) are shown in Figure 2 and Figure 3, respectively. Figure 2 shows 

how the probabilities of selecting the channels converge for link 15 while Figure 3 shows that these 

probabilities are not updated at all. All the channels keep their initial equal probability, 0.1, all the time. In 

each iteration one of the channels is selected randomly.  

By using the Pursuit Reward-Penalty algorithm, the „left-out‟ links problem is eliminated and the 

probability of selecting the channels is updated even if the channel allocation is not providing a satisfactory 

performance. Although the probabilities of channel selections are updated, the channel allocations for 6 

links (links 5, 7, 12, 21, 22, and 23) do not converge yet by the end of the simulation. The channel 

allocations for the mentioned links provide a performance much smaller than the desired performance (i.e., 

unsatisfactory environment response). Hence the probabilities of channel selection for these links are 

updated through the “penalty” process of the algorithm. The probabilities of channel selections for one of 

the converged links (link 15), and one of the yet non-converged links (link 7) are shown in Figure 4 and 

Figure 5, respectively. Figure 4 shows how the probabilities of selecting the channels converges for link 15, 

and Figure 5 shows that these probabilities for link 7 are converging, though slowly  (parameter adjustment 

might be needed or increasing the speed here). 

Figure 6 shows the changes in the channel allocations as the Pursuit Reward-Only algorithm runs on the 

network. It shows that the channel allocations of all the links converge. The probabilities of channel 

selection for all the links are updated with the “pursuit” characteristic regardless of the environment 

response (channel performance). The updates are performed such that the probability of selecting the 

channel with the best performance is increased, and the probabilities of selecting the other channels are 

decreased. The magnitude of the relative error determines the magnitude of the update step.  

Comparison of the results of the three algorithms shows that the Pursuit Reward-Penalty provides update 

and convergence for the cases that the channel performance is significantly smaller than the desired 



 15 

performance. The Pursuit Reward-Inaction did not guarantee the update for the less than desirable 

performance. This would result in “left-out” links; the links with no converged channel allocation. On the 

other hand, the Pursuit Reward-Only algorithm always increases the probability of the channel with the 

highest performance, whether the performance of the selected channel is satisfactory or not. This algorithm 

provides the fastest convergence among the three algorithms.  

V. CONCLUSIONS 

In this paper we propose a distributed dynamic channel allocation algorithm for wireless networks whose 

nodes are equipped with single radio interface. We make the single-radio assumption for the sake of 

simplicity of the network, planning to apply the learning algorithm to wireless ad-hoc sensor networks. The 

periodic nature of the algorithm makes it dynamic and enables the channel allocation to adapt to the 

topographic changes, possible loss of some channels, mobility of the nodes, and the traffic flow changes. 

The Adaptive Pursuit learning algorithm runs periodically on the nodes, and adaptively finds the optimum 

channel allocation that provides the desired performance. By selecting realistic desired performance metric, 

the convergence of the algorithm can be guaranteed. The analytical proof of convergence is presented in 

this appendix, and also the simulation results for networks of different densities and data channels were 

provided and showed a significant improvement in throughput, drop rate, energy consumption per packet, 

fairness index when compared to the single-channel. 802.11 and random allocation of the channels. 

Also in order to avoid the „left-out‟ links in the learning process in the first algorithm (Adaptive PRI), we 

proposed using the other two algorithms, Pursuit Reward-Penalty and Pursuit Reward-Only algorithms.  

We compared the results of these two algorithms to the results of the Pursuit Reward-Inaction, and 

showed that the Pursuit Reward-Penalty eliminates the „left-out‟ links problem, and provides convergence 

using the same parameters as used in the Pursuit Reward-Inaction. The Pursuit-Only algorithm also 

eliminates the „left-out‟ links problem. Also with the same parameters, it provides a faster convergence 

compared to the Pursuit Reward-Penalty algorithm. 
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Appendix A.  Proof of Convergence 

In Section II.B, the channel allocation algorithms were presented. In this section, the proofs of 

convergence of the algorithms are presented. The proofs follow the general method used in [14]. 

A. Proof of Convergence of the Adaptive Pursuit Reward-Inaction Algorithm 

Theorem I establishes that for each node that is running the algorithm, if after a certain time, the channel 

allocation results in a greater performance for one channel compared to the other channels,  the probability 

of selecting that channel tends to 1. Theorem II establishes that for each node and each channel, there exists 

a time that the channel has been selected by the node for at least M times. This guarantees having the 

average throughput, delay and consumed energy values, which are required for the performance evaluation. 

Theorem I: Suppose there exists an index im  and a time instant 
0k  such that )(ˆ)(ˆ kk j

i

m

i
i  for all j 

such that 
imj and all 

0kk . Then there exists 
0
 and 

0
 such that for all resolution parameters 

(
00 , ), 1)(kp im

i
   with probability 1 as k . 

Proof: From the definition for Discrete Pursuit Reward-Inaction, we know that if 
im satisfies 

)(ˆmaxarg km j

iji
, where )(ˆmax)(ˆ kk j

ij

m

i
i , then )(ˆ)(ˆ kk j

i

m

i
i  for all 

imj and all 
0kk . 

Therefore, for all 
0kk , i

i

1,

m

i

m

i

1 ( ( ) ( )),   

            if ( ) 0 (w.p.   ( ))( 1)

    

      if ( ) 1 (w.p.  1 -  ( ))

i

i

i

N
j

i

j j m

lm
ii

m

i

l

i

p k k

k kp k

p (k)

k k

                                                                                             

If 1)(kp im

i
, then the “pursuit” property of the algorithm trivially proves the result. 

Assuming that the algorithm has not yet converged to the 
im th channel, there exists at least one nonzero 

component of )(kiP , )(kpq

i
, with 

imq . Therefore we can write  
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)()()()1( kpkkpkp q

i

q

i

q

i
.                                                                                                                     

Since )(kiP  is a probability vector, 1)(
1

N

j

j

i kp , and 
N

mjj

j

i

m

i

i

i kpkp
,1

)(1)( . Therefore, 

1,

1 ( ( ) ( )) ( )i

i

N
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i i

j j m

p k k p k .                                                                                                                       

As long as there is at least one nonzero component, )(kpq

i
 (where 

imq ), it is clear that we can 

decrement )(kpq

i
 and increment )(kp im

i
 by at least )(k . Hence, )()()()1( kkckpkp ii m

i

m

i
,                                                                                                                     

where )()( kkc  is an integral multiple of )(k , and Nkc )(0 , and      

otherwise                
)(

)(
 if           ,

)(

)(

*

**

k

kk

k                                                                                                         

Therefore we can express the expected value of )1(kp im

i
 conditioned on the current state of the channel, 

)(kQ , ( ( ) ( ), ( ) )i ik k kQ P  as follows 

[ ( 1) | ( ), ( ) 1] ( ) [ ( ) ( ) ( )] 1 ( ) ( )

( ) ( ) ( ) ( )

i i i i i i

i i

m m m m m m

i i i i i i

m m

i i

E p k k p k k p k c k k k p k

p k k c k k

Q


                                                                                         

Since all the previous terms have an upperbound of unity, ]1)(),(|)1([ kpkkpE ii m

i

m

i Q  is also bounded, 

]1)(),(|)1([sup
0

kpkkpE ii m

i

m

i
k

Q .                                                                                                        

Thus we can write
0[ ( 1) ( ) | ( )] ( ) ( ) ( ) 0,         for all i i im m m

i i iE p k p k k k c k k k kQ                                                                                                        

implying that )(kp im

i
 is submartingale. By submartingale convergence theorem, the sequence 

0
{ ( )}im

i k kp k converges.  

Therefore .    as    .1,       w.p0)](|)()1([ kkkpkpE ii m

i

m

i Q  

This implies that     w.p.10)()()( kkckim

i
. This in turn implies that 

    w.p.10)(kc  ( ( ) 0    w.p.1)k , which means there is no nonzero element in )(kiP except for )(kp im

i
(or 
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0)(k ). Consequently,     w.p.10)(
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Theorem II: For each node i and channel j, assume 0)0(j

ip . Then for any given constant 00
 and 

M , there exists 
0

, 
0

 and 
0k  such that under the Discrete Pursuit Reward-Inaction 

algorithm, for all learning parameters 
0
 and 

0
 and all time 

0kk : 

Pr{each channel chosen by node i more than M times at time k}  
01 . 

Proof: Define the random variable )(kY j

i
 as the number of times that channel j was chosen by node i up 

to time k. then we must prove that 
01})(Pr{ MkY j

i
. This is equivalent to proving  

0})(Pr{ MkY j

i
.                                                                                                                               (A.1) 

The events qkY j

i )(  and skY j

i )(  are mutually exclusive for sq , so we can rewrite Equation (A.1) as  

0

1

})(Pr{
M

q

j

i qkY .                                                                                                                             

For any iteration of the algorithm, Pr{choosing channel j} 1. Also the magnitude by which any channel 

selection probability can decrease in any iteration is bounded by 
*

)(k  (or 
*

)(k ), where )(k  

for all k. During any of the first k iterations of the algorithm: 

*)0(1} nodeby chosen not  is  {channelPr kpij j

i .                                                                    

Using these upper bounds, the probability that channel j is chosen at most M times among k choices, has 

the following upper bound 

M

l

lkj

i

lj

i kplkCMkY
1

* ))0(1()1)(,(})(Pr{                                                                                (A.2)  

In order to make a sum of M terms less than 
0
, it is sufficient to make each term less than 

M
0 . 

Consider an arbitrary term, .ml  We must show that  
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M
kpmkC mkj
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m 0
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0* ))0(1()1)(,( mkj

i

m kpmkCM .                                                                                             

Knowing that mkmkC ),( , we have to prove that 
0*)0(1

mk

j

i

m kpkM .  

Now in order to get the L.H.S of this term to be less than 
0
 as k increases, 

*)0(1 kp j

i
 must 

be strictly less than unity. In order to guarantee this, we bound the value of   with respect to k in such a 

way that 1)0(1 *kp j

i
. We can achieve this by requiring that *)0(

k

p j

i .                                                                                                                                             
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2
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i .                                                                                                                                   (A.3) 

With this value of , Equation (A.2) is simplified to mkmj
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k
kMlim . 

mk

m

k

mkm

k

k
MkM

1
limlim   , with *

2

)0(

k

p j

i . 

By applying l‟Hopital‟s rule: 
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Therefore Equation (A.2) has a limit of zero as k  and 0 , whenever Equation (A.3) is satisfied. 

Since the limit exists, for every channel j there is a k(j) such that for all )( jkk , Equation (A.2) holds. 

Now set *

)(2

)0(
)(

jk

p
j

j

i . It remains to be shown that Equation (A.2) is satisfied for all )( j , and 

for all )( jkk . This is trivial because as  decreases, the L.H.S of Equation (A.2) is monotonically 

decreasing, and so the inequality (A.2) is preserved. 
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Also for any )( jkk , since MkYMjkY j

i

j

i )())(( , by the laws of probability: 

}))((Pr{})(Pr{ MjkYMkY j

i

j

i
.                                                                                                          

Thus in this case also, the inequality (A.2) still holds. Hence for any channel j, 
0})(Pr{ MkY j

i
 

whenever )( jkk  and )( j . Since we can repeat this argument for all the channels, we can define 
0k  

and 0 as 
0 1max { ( )},j Nk k j and 

0 1max { ( )}.j N j   Thus for all j, it is true that for all 
0kk  and 

0
 

(
0
), the quantity 

0})(Pr{ MkY j

i
 and theorem is proved.                     
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Figure 1. The two periods of control and data, and time slots within the data transmission period. 
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Figure 2. The probability of selecting the channels for link_15, using the Adaptive Pursuit Reward-Inaction algorithm. 
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Figure 3. The probability of selecting the channels for link_7, using the Pursuit Reward-Inaction algorithm. 
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Figure 4. The probability of selecting the channels for link_15, using the Pursuit Reward-Penalty algorithm. 
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Figure 5. The probability of selecting the channels for link_7, using the Pursuit Reward-Penalty algorithm. 
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Figure 6. Channel allocation for 25 links in a network of 50 peer-to-peer nodes, using Pursuit Reward-Only learning automata. 

Channel allocations for all the links have converged. 

Table 1. Throughput, drop rate, energy consumption, and fairness index of the network with different channel allocation 

schemes. 
 

 
Throughput (Mbps) 

 

Drop rate(Mbps) 

Energy consumption 

(joules/packet) 

Fairness index 

3 flows 10 flows 25 flows 3 flows 10 flows 25 flows 3 flows 10 flows 25 flows 3 flows 10 flows 25 flows 

802.11 – single data channel 4.20 3.89 3.00 0.77 15.98 47.00 0.00215 0.00807 0.01969 0.8028 0.4443 0.2157 

Adaptive PRI – 

2 data channels 
6.15 8.25 7.83 0 11.75 42.94 0.00140 0.00331 0.00774 0.9620 0.7344 0.4082 

Adaptive PRI – 

3 data channels 
6.12 12.44 12.19 0 5.82 38.80 0.00125 0.00235 0.00521 0.9716 0.8337 0.5129 

Adaptive PRI – 

6 data channels 
6.10 19.35 24.80 0 0.26 26.13 0.00114 0.00153 0.00284 0.9789 0.9090 0.7244 

Adaptive PRI – 

8 data channels 
6.10 20.34 32.70 0 0 17.76 0.00111 0.00135 0.00226 0.9811 0.9431 0.7689 

Adaptive PRI – 

10 data channels 
6.15 20.57 39.58 0 0 10.16 0.00109 0.00130 0.00192 0.9824 0.9531 0.8022 

802.11 – 

10 data channels, random channel 

allocation 

6.20 18.80 32.53 0 0.65 18.40 0.00105 0.00142 0.00219 0.9811 0.9475 0.7921 

 

 

 

 
Table 2. Throughput, drop rate, energy consumption, and fairness index when using the three learning schemes of channel 

allocation and 10 data channels. 
 

 

Throughput (Mbps) Drop rate (Mbps) Energy consumption (joules/packet) Fairness index 

3 flows 
10 

flows 

25 

flows 
3 flows 10 flows 

25 

flows 
3 flows 10 flows 25 flows 3 flows 10 flows 25 flows 

Adaptive 

PRI – 

10 data 

channels 

6.15 20.57 39.58 0 0 10.16 0.001085 0.001301 0.001924 0.9824 0.9531 0.8022 

Adaptive   

PRP– 

10 data 

channels 

6.15 20.61 39.95 0 0 9.93 0.001085 0.001312 0.001917 0.9824 0.9507 0.8080 

Adaptive 

PRO – 

10 data 

channels 

6.15 20.59 39.82 0 0 9.91 0.001085 0.001301 0.001915 0.9824 0.9527 0.8027 
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Table 3. Performance metrics of a network with flows. The channel allocation performed using the Adaptive PRI and 10 data 

channels. 

 
PRI, 10 data channels 

25 flows 10 flows 3 flows 

Throughput 

(Mbps) 
36.76 25.03 6.14 

Drop rate 

(Mbps) 
4.90 0.09 0 

Energy 

consumption 

(joules/packet) 

0.002042 0.001249 0.000991 

Fairness index 0.7501 0.9021 0.9832 

 

 

 

Table 4. Performance of the Adaptive PRI with 10 data channels on a network of 50 flows, while nodes moving in different 

speeds. Also performance of the single-channel 802.11and randomly allocated 10 data channels using 802.11 on the same 

network, while nodes moving at a maximum speed of 10 m/s. 

  

 

 

 

Adaptive PRI, 10 data channels 

802.11  - 

single 

channel 

802.11 – 10 

data 

channels, 

randomly 

allocated 

Static (0 m/s) 5 m/s 10 m/s 15 m/s 20 m/s 10 m/s 10 m/s 

Throughput (Mbps) 
 

84.31 

 

83.68 

 

82.96 
81.84 

 

79.44 

 

15.51 

 

69.97 

Drop rate (Mbps) 
 

13.35 

 

14.10 
14.62 15.71 17.78 

 

80.43 
26.92 

Energy 

consumption 

(joules/packet) 

 

0.001734 

 

0.001735 

 

0.001741 

 

0.001760 

 

0.001811 

 

0.008398 

 

0.001940 

Fairness index 
 

0.7066 

 

0.6975 

 

0.6900 

 

0.6868 

 

0.6636 

 

0.2169 

 

0.6263 
 

 


